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Welcome to new developers!
The purpose of this document is to help you use FloPoCo operators in other projects (section 1), and

to show you how to design your own pipelined operator using the FloPoCo framework (sections 2 and
following).
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1 FloPoCo from a user point of view

1.1 Getting the source and compiling using CMake

It is strongly advised that you work with the git version of the source, which can be obtained by following
the instructions on http://flopoco.org/flopoco_installation.html. If you wish to distribute
your work with FloPoCo, contact one of the project mainteners.

1.2 Overview

FloPoCo is an executable with a fairly simple command-line interface that may generate VHDL source code
for most operators described in this book (and a few more).

An operator specification consists of an operator name followed by a list of parameter values.
Basic FloPoCo command-line example
The command
flopoco IEEEFPAdd wE=8 wF=23

produces a file called flopoco.vhdl containing synthesizable VHDL for an IEEE754 single precision
floating-point adder.

Some operators come as a single VHDL entity, and in other cases the generated VHDL file contains
many entities with a hierarchy of component instantiations. For instance the previous command outputs
the following text on the console, showing 4 sub-components:

http://flopoco.org/flopoco_installation.html


|---Entity RightShifterSticky26_by_max_25_comb_uid4
| Not pipelined
|---Entity IntAdder_27_comb_uid6
| Not pipelined
|---Entity LZC_26_comb_uid8
| Not pipelined
|---Entity LeftShifter27_by_max_26_comb_uid10
| Not pipelined
|---Entity IntAdder_31_comb_uid13
| Not pipelined
Entity IEEEFPAdd_8_23_comb_uid2

Not pipelined

The top-level entity, in such cases, is the last one.
It is also possible to have several operator specifications in the same command line.

An FPU for Nfloat format
The following command produces an adder, a multiplier, a divider and a square root operator for the
Nfloat equivalent of single precision (all in the same VHDL file).
flopoco FPAdd wE=8 wF=23 FPMult we=8 wf=23 FPDiv we=8 wf=23 FPSqrt we=8 wf=23

Finally, it is possible to specify the value of global parameters such as the frequency in the example be-
low (frequency-directed pipelining is discussed further in Section 1.8). Another important global parameter
is target which specifies the target hardware.
An FPU pipelined for 200 MHz
The following command pipelines the previous FPU for 200 MHz.
flopoco frequency=200 FPAdd wE=8 wF=23 FPMult we=8 wf=23 FPDiv we=8 wf=23 FPSqrt we=8

wf=23

The size of the generated VHDL code may vary from a few bytes to a few megabytes. It depends on the
complexity of the operator, on the value of the parameters, but also on the very nature of the subcompo-
nents: an addition may be described by a single character + in the VHDL implementation, whereas a table
of precomputed values, provided in extension, may be arbitrarily large.

1.3 Data-types in FloPoCo

Let us detail those parameters that are related to data formats.

1.3.1 Fixed-point numbers

In FloPoCo, a fixed point format is defined by two integers: the weights of the MSB and the LSB, which can
be positive or negative. For instance the unit bit has weight 0, the point is between weights 0 and -1.

These two weights are inclusive (Figure 1): The size of the corresponding bit vector will be MSB-LSB+1.
This is true for signed as well as unsigned numbers: If the format is signed, then the sign bit is the bit of
weight MSB.

A fixed-point format may be signed or unsigned (Figure 1). For signed formats the sign bit is at the
position m.

For some operators, the signedness is a parameter. In this case it is a boolean parameter (true for signed).
Now for a more stylistic, but nevertheless useful convention. Whenever an interface (be it to the com-

mand line, or to an internal function) includes the MSB and the LSB of the same format, they should appear
in this order (MSB then LSB). This order corresponds to the order of the weights in the binary writing (the
MSB is to the left of the LSB). When a boolean signedness is passed as well, it should be first, for the same
reason (the sign bit is the leftmost bit).



bit position -9-8-7-6-5-4-3-2-101234567 = ℓm =

2m 20 2ℓbit weights

Figure 1: An unsigned fix-point format ufix(m, ℓ).

bit position

s

-9-8-7-6-5-4-3-2-101234567 = ℓm =

−2m 2m−1 20 2ℓbit weights

Figure 2: A signed fixed-point format sfix(m, ℓ).

Some examples of fixed-point formats:

• C char type corresponds to MSB=7, LSB=0.

• a n-bit unsigned number between 0 and 1 has MSB=-1 and LSB=-n

• a n-bit signed number between -1 and 1 has MSB=0 and LSB=-n+1

Finally, whenever we can live with integers, we should stick with integers and not obfuscate them as
fixed-point numbers.

1.3.2 Floating-point numbers

FloPoCo partly supports two floating-point formats.

IEEE floating-point numbers The standard IEEE-754 is generalized to arbitrary exponent and mantissa
sizes (see Figure 3)

s E F

1 wE wF

Figure 3: Bit fields of an IEEE754-like floating-point number of parameters (wE, wF)

The exponent field is used to encode

• infinities (exponent field E = 11...11, F = 0),

• Not a Number or NaN (exponent field E = 11...11, F ̸= 0),

• subnormals (exponent field E = 00...00, F ̸= 0)

• (signed) zeroes (exponent field E = 00...00, F = 0)



When not infinity and not NaN, the value of a floating-point vector may be defined as follows (where
E0 is the exponent bias and n is the “is normal” bit):

E0 = 2wE−1 − 1 (1)

n =

{
0 if E = 0
1 otherwise

X = (−1)s × 2E−E0+1−n × (n + F) .

Simple floating-point numbers FloPoCo also supports a simpler format where the exceptional cases
(zero, infinity, NaN) are encoded in two additional bits (see Figure 4 and Table 1). This makes it more
hardware-efficient (no decoding/encoding of these exceptional cases in the exponent), but less memory-
efficient. Also, this format does not support subnormal numbers.

exn s E F

12 wE wF

Figure 4: Bit fields of a flopoco floating-point number of parameters (wE, wF)

When exn= 01 (normal numbers), the value encoded is

X = (−1)s × (1 + F)× 2E−E0 (2)

where E0 is the same exponent bias as in IEEE-754 formats: E0 = 2wE−1 − 1.

Table 1: Encoding of exceptional cases in the FloPoCo floating-point format

exn meaning

00 zero (there are two zeroes, noted +0 and −0, according to s)
01 normal numbers
10 infinity (+∞ or −∞, according to s)
11 NaN (Not a Number)

Brief comparison of the two formats Since the extremal values zero and infinity are not encoded as spe-
cial exponent values, the exponent range for normal numbers is slightly larger than in the IEEE754 for the
same value of wE, as Table 2 shows. However a number in the FloPoCo format two more bits than a number
in the IEEE754 format, for the same (wE, wF).

1.3.3 Format conversion utilities for debugging

FloPoCo includes small useful programs that convert the binary string of a floating-point number to
human-readable decimal, and back:

• fp2bin and bin2fp for the FloPoCo format;

• fp2ieee and ieee2fp for the IEEE format.

fp2bin



Table 2: Comparison of properties of the IEEE and FloPoCo formats.

IEEEfloat(wE, wF) Nfloat(wE, wF)

bias value E0 = 2wE−1 − 1

Total size wE + wF + 1 bits wE + wF + 3 bits
emin −2wE−1 + 2 −2wE−1 + 1
emax 2wE−1 − 1 2wE−1

Smallest 2emin−wF = 2−2wE−1+2−wF 2emin = 2−2wE−1+1

Largest (2 − 2−wF) · 2emax (2 − 2−wF) · 2emax

Functional specification

Performance specification

architecture
generator

input format
output format

operator-specific parameters

target FPGA
target frequency

operator-specific controls

.vhdl

Figure 5: Interface to a flopoco Operator

1.4 More on parameters

All the parameters are provided to FloPoCo as name=value pairs.
Each operator is heavily parameterized with functional and performance parameters. To know

the parameters of a given operator, just invoke flopoco for this operator without parameters, e. g.,
flopoco FPAdd.

As illustrated in Figure 5, parameters can be broadly separated in two classes: functional parameters
specify the function, while performance parameters control the performance and its many trade-offs (such
as memory versus compute, area versus speed, frequency versus latency, etc.).

A general rule is that functional parameters should be mandatory with no default value, while perfor-
mance parameters should be optional with a sensible default value. However, there are exceptions to both
rules. For instance, there is one parameter to FPAdd which decides if the operator should be an adder
or a subtracter. This is a functional parameter, but its default is set to addition, because we feel it is the
most common case. Conversely, FixFunctionByPiecewisePoly has a mandatory parameter for the
degree to be used, although it is definitely a performance parameter. The reason here is that we feel that
the decision of a “sensible default value” is too application-dependent.

For a given operator, there are usually many parameter combinations that do not make sense. We at-
tempt to filter them and provide sensible error messages in such cases, but users often have more imagina-
tion that developers can anticipate, and invalid combinations of parameter values may lead to unexpected
crashes or non-working VHDL.

1.5 Global options

Several global options are available. They are also specified as name=value pairs and will typically change
the operators occuring after them in the list. Here is a non-exhaustive list, the full list is available on the
command line when typing flopoco with no argument.



• target=Virtex5 sets the target hardware family. For a list of supported families see the command
line. We typically target the highest speed grade available for a family.

• frequency=300 sets the target frequency (in MHz). FloPoCo will attempt to pipeline the operator
for this frequency (see Section 1.8 below).

• name=UserProvidedName replaces the (ugly and parameter-dependent) entity name generated by
FloPoCo for the next operator. This allows in particular to change parameters while keeping the same
entity name, so that these changes are transparent to the rest of the project.

• plainVHDL=yes instructs FloPoCo to output concise and readable VHDL, using only + and * VHDL
operators instead of FloPoCo adders and multipliers. This helps understanding the algorithms used
by FloPoCo, but typically prevents or degrades automatic pipelining.

• useHardMult=no instructs FloPoCo not to use hard multipliers or DSP block.

• hardMultThreshold=0.7 instructs FloPoCo to use a hard multiplier (or DSP block) if less than 70%
of this hard multiplier are unused. The ratio is between 0 and 1, such that 0 means: any sub-multiplier
that does not fully fill a DSP goes to logic; 1 means: any sub-multiplier, even very small ones, will
consume a DSP.

• generateFigures=1, for some operators, will generate relevant graphics in SVG or LaTeX.

• dependencyGraph=<no|compact|full> generates data dependency graphs.

• clockEnable=false, FloPoCo will add clock enable signals for every pipeline stage.

• nameSignalByCycle=false, when true then the delayed signals are postfixed by their cycle in-
stead of their delay. This is automatically set to true when clock enable is true.

1.6 Do not trust FloPoCo, the test bench is included

FloPoCo is able to generate an infinite number of different operators, and the developers have obviously not
tested each of them. This issue is intrinsic to application-specific arithmetic. A simple solution developed
in FloPoCo is that each operator comes with a test bench generator that will exercise exactly the operator
being generated.

Details about the construction of these test benches can be found in the developer manual (see http:
//flopoco.org/ for the latest version). The point to stress here is that the resulting test benches can
be trusted by users. The main reason for this is that the test vectors are not built out of the VHDL being
generated, but out of the mathematical specification of the operator (as a mathematical function combined
with a well-defined rounding, implemented in C++, see Section 3 below). Thus, the probability of a bug
in the VHDL being hidden by a bug in the test bench is very low. In addition, the code that generates
testbenches is very small, quite boilerplate, and based on reference multiple-precision libraries that are well
specified and well established: GMP and MPFR. For this reason, the confidence in the test bench is much
higher than the confidence in the generated VHDL.

The test bench generation also provides how the open-source VHDL simulator nvc (https://github.
com/nickg/nvc) can be invoked to test the circuit. We highly recommend this fast and reliable command
line simulator. The command line is sufficient as it tells the user/developer if everything went fine (0
error(s) encoutered) or the test cases that failed. In this case, waveform are written by nvc and calls to
the open-source waveform viewer gtkwave (https://gtkwave.sourceforge.net) are provided that
allows to further debug what went wrong.

The user interface to the test bench generation is kept extremely simple, to encourage users to test their
FloPoCo operators.

http://flopoco.org/
http://flopoco.org/
https://github.com/nickg/nvc
https://github.com/nickg/nvc
https://gtkwave.sourceforge.net


TestBench generation in FloPoCo
The following command builds a divider by 3 for 16-bit integers, and an exhaustive test bench for this
operator:
flopoco IntConstDiv wIn=16 d=3 TestBench

This command creates a VHDL file and a (human-readable) test.input file containing all the possible
values of the input and the corresponding expected output. It also outputs instructions to launch this test
using a choice of VHDL simulators.

Operation-specific testBench generation
For operators having a large input word size, exhaustive testing is out of reach. In such cases, the test
should be limited to a smaller number of test vectors. The following command is an example of a (Nfloat)
binary32 floating-point adder with 100,000 random tests.
flopoco FPAdd we=8 wf=23 TestBench n=100000

This testbench actually begins with all the corner-case test vectors that the developers of FPAdd could
think of, including a few regression test vectors corresponding to past bugs.
In addition, the random number generator used there is specific to the operator under test: with two
random bit strings as inputs, the probability of a cancellation in the addition would be quite low, since it
only happens when the exponents differ at most by 1. To properly test this important feature of floating-
point addition, the random generator used has been slightly tweaked to make cancellations more frequent.
See the developer manual for more details.

1.7 Obscure branches and code attics

The installation instructions on the web site currently use the master branch of the Git repository of
FloPoCo. Beyond this branch, there are quite a few other, more experimental branches and forks where
one may find rarer operators, or code snapshots that ensure that a publication is reproducible.

In principle, developers are encouraged to merge their work in the master branch as soon as it may
be of general use. They are also encouraged to clean up the master branch of experimental code, over-
parameterization for research purpose, or obsolete variants for which a better option is available. Unfortu-
nately, they often do not have the time for these two time-consuming tasks, and we do apologize for this.
Any feedback on what should be prioritized will be welcome.

Quite often, a change to the FloPoCo framework (or to one of the libraries it uses) breaks some operators.
If these operators are not fixed by their original developers, the maintainers end up disabling them in the
master branch. Usually the code is just unplugged, not removed, : it is kept in “attic” directories or “obscure
branches”, where it may still compile, or not. In any case, this code is still there for review and/or porting
to the current framework, should the need arise. Examples of code which is currently disabled but would
deserve to be revived include the HOTBM function approximator by Jérémie Detrey [1], the LNS operators
by Caroline Collange [2], the FPGA-specific random number generators by David Thomas [3], among many
others.

1.8 Automatic pipelining, the user point of view

Most operators presented in this book are combinatorial circuits: they have no memory, the result only
depends of the input, not of the past history of the operator. This is another direct consequence of the
definition of an operator as the composition of a mathematical function1 and a well-defined rounding.

Another point of view is that the directed graph of subcomponents that describes the circuit (down
to the gates or whatever elementary processing elements of the technology) is acyclic. However, each

1The main exceptions are the floating-point accumulators and the filters. There could be some day iterative variants of dividers,
CORDIC operators, and in general digit-recurrence algorithms, but none of these is currently available in FloPoCo: the tool provides
only the unrolled, combinatorial variants.
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(b) The same operator, pipelined into N = 4 stages: frequency can be multiplied by 4.

Figure 6: Pipelining a combinatorial operator



component of this graph needs some time (and some energy) to perform its computation. If an input is
presented at time t0, the correct output will be computed after some delay ∆t (measured in seconds). This
delay may depend on the input. Its maximum value over all the possible inputs is called the critical path
delay of the circuit, noted ∆t. If the operator is sandwiched between input registers and output registers as
illustrated by Figure 6(a), then the input registers may present a new input every ∆t period, and the circuit
will have the time to process this input (and register the result in the output registers) before the next input
is presented. In other words, the operator can operate at frequency 1/∆t.

Pipelining is a technique that allows an operator to function at a higher frequency by dividing the circuit
graph into N slices called pipeline stages, determined such that the critical path delay of each slice is about
∆t/N. Registers are inserted between slices to hold intermediate computations, as illustrated by Figure 6(b).
If the pipeline is ideally balanced, and ignoring the delay added by these extra registers, the frequency can
become N/∆t: compared to the combinatorial circuit, the frequency has been multiplied by N. The cost
is additional registers. In practice, however, it is difficult to achieve a perfectly balanced pipeline, and the
registers add some delay which limits the achievable frequency [4, 5].

Pipelining combinatorial operators is simple in theory but time-consuming if performed by hand. As
Figure 7 illustrates, actual operators are often more complex than Figure 6. FloPoCo therefore automates
this task. The interface for it is simply the target frequency provided through the frequency parameter.
An important remark on Figure 7 is that FloPoCo does not add any input and output registers. All it does
is insert the intermediate (pipeline) registers. The “pipeline depth” it reports is the number of synchroniza-
tion barriers inserted (this information is also provided in comments before each entity declaration in the
generated VHDL).

The resulting pipeline is quite good for practical purposes. Note however that FloPoCo does not pretend
to generate an optimal pipeline (an optimal pipeline would minimize the overall cost of the registers while
achieving a given target frequency [6]). It does not even guarantee that the operator will operate at the
prescribed frequency – we are at the mercy of the backend tools that will transform the VHDL into an
actual circuit. Indeed, these tools are the proper place for fine-tuning a pipeline. However, it does guarantee
that the pipeline is well synchronized (and TestBench adapts to pipelined operators for users to check).
Hence, cases where the required frequency is not reached or even too high can be easily fixed by adjusting
the target frequency accordingly. Note that this may be done on a per-operator basis, as in:
flopoco FPAdd frequency=200 wE=11 wF=53 FPMult frequency=300 wE=8 wF=23

Sandwiching an operator with register
In order to measure the actual operating frequency at which an operator runs, it is important to add the
registers on the inputs and outputs. FloPoCo provides an operator that sandwiches between registers the
operator preceding it on the command line (just like TestBench tests the preceding operator).
flopoco frequency=400 FPAdd wE=8 wF=23 RegisterSandwich

1.9 Synthesis helper tools

FloPoCo also provides (in the tools/ directory) small python scripts that will synthesize an operator for
an FPGA using either Vivado or Quartus. These tools read in the VHDL file the target information, launch
synthesis accordingly, and report the main synthesis result on the console.

2 Tutorial for new developers

The FloPoCo distribution include a dummy tutorial operator in src/TutorialOperator.hpp and
src/TutorialOperator.cpp. It describes an operator class TutorialOperator that you may freely
modify without disturbing the rest of FloPoCo.

TutorialOperator is heavily documented, and this section assumes that you are looking at it.
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Figure 7: Pipelining a floating-point adder

After compiling FloPoCo, run in a terminal
./flopoco TutorialOperator

You will obtain the documentation on the parameters of this operator. This documentation is defined
by the TutorialOperator::registerFactory method.

Now run in a terminal
./flopoco TutorialOperator param0=8 param1=8

and you should obtain some VHDL in flopoco.vhdl

2.1 Contributing to the FloPoCo gitlab

The FloPoCo gitlab master branch should be viewed as the stable or release branch of FloPoCo, that users
should use in priority, unless they are in need of some of the newer features. It is guaranteed to be stable,
documented and have a coherent set of features.

The dev/master branch of the git should be considered as the bleeding edge version of FloPoCo: it is
considered ’ok’ if it breaks from time to time, even though everyone tries to maintain its stability as much
as he can on the parts he’s responsible for.

As a result, every new feature or operator should be developed in a branch derived from dev/master.
Once the developer feels like the work is done, a merge-request to dev/master should be opened, which
will trigger the CI and check that everything builds correctly. The CI has 3 sequential steps:

• the build stage, which builds flopoco and its dependencies (WCPG, SCIP, ScaLP, PAGSuite) on both
Linux (latest debian) and macOS (currently running on a Sonoma VM)

• the autotest stage, which runs all operator autotests with testLevel = 0



• the deploy stage, which collects all of the autotest results, and publish it in
doc/web/autotests.html as a HTML table.

2.2 Overview of FloPoCo code organization

In the code/ directory, there are several subdirectories:

HighLevelCore is a library of arithmetic optimization code, independent of the actual HDL generation.
For instance, it will contain the code for polynomial or multipartite approximation to functions, or
code that optimizes the shift-and-add tree of a constant multiplier.

VHDLOperators is the library contains the bulk of FloPoCo code that generates VHDL.

FloPoCoBin contains the source of the flopoco executable (linking both previous libraries) and of a few
other helper executables.

This separation is still work in progress, therefore expect to find in VHDLOperators a lot of code that should
be in HighLevelCore.

The core of FloPoCo is the Operator class (in VHDLOperators). Operator is a virtual class from which
all FloPoCo operators inherit.

The FloPoCo source includes a dummy operator, TutorialOperator, for you to play with. Feel free
to experiment within this one.

A good way to design a new operator is to imitate a simple one. We suggest Shifter for simple integer
operators, and FPAddSinglePath for a complex operator with several sub-components.

Another important class hierarchy in FloPoCo is Target, which defines the architecture of the target
FPGA. It currently has several sub-classes, including Virtex and Stratix targets. You may want to add
a new target, the best way to do so is by imitation. Please consider contributing it to the project.

The command-line parser is in UserInterface but in principle you won’t have to edit it. It takes infor-
mation from each operator’s documentation strings defined in their OperatorDescription construction.
Again, we hope that you can design the interface to your operator by imitation of existing ones.

2.3 Adding a new operator to FloPoCo

To add a new operator to FloPoCo, you need to

• write its .cpp and .hpp (we suggest you start with a copy of TutorialOperator, which is an
almost empty skeleton);

• add it to the CMakeList.txt of his directory.

If you are unfamiliar with the CMake system2, there is little to learn, really. Straightforward imitation of
existing content will cover most cases, otherwise cmake is well documented.

2http://www.cmake.org/

http://www.cmake.org/


2.4 First steps in FloPoCo operator writing

FloPoCo mostly requires you to embed the part of the VHDL that is between the begin and the end of the
architecture into the constructor of a class that inherits from Operator. The following is minimal FloPoCo
code for MAC.cpp:

#include "Operator.hpp"

class MAC : public Operator
{
public:
// The constructor
MAC(Target* target): Operator(target)
{
setName("MAC");
setCopyrightString("ACME MAC Co, 2009");

// Set up the IO signals
addInput ("X" , 64);
addInput ("Y" , 32);
addInput ("Z" , 32);
addOutput("R" , 64);

vhdl << declare("T", 64) << " <= Y * Z;" << endl;
vhdl << "R <= X + T;" << endl;

}

// the destructor
˜MAC() {}

And that’s it. MAC inherits from Operator the method outputVHDL() that will assemble the informa-
tion defined in the constructor into synthesizable VHDL. Note that R is declared by addOutput.

So far we have gained little, except that is is more convenient to have the declaration of Twhere its value
is defined. Let us now turn this design into a pipelined one.

2.5 Adding delay information

A latency (in seconds) may be passed as first optional argument to declare(). This value decribes the
contribution of this VHDL statement to the critical path, and will be used to pipeline the operator (see



Section 4 for details). This latency is best defined using methods of Target: this way the pipeline will
adapt to the target. See FPAddSinglePath for examples.

2.6 Sub-components: unique instances

In FloPoCo, most instances are unique: an Operator is built for a specific context, optimized for this con-
text, and only one instance of this Operator will be used in the VHDL. This is the default situation, because
it allows the tool to optimize the pipelining of each component for its context. The preferred method to
use in such case is the newInstance() method of Operator. See FPAddSinglePath for an example of a large
component that instantiates many sub-components (several IntAdder, Shifter, etc).

newInstance() uses the factory-based user interface. It is common to need a table of pre-computed
values. To get a unique instance of such a table, first build the table content as a vector<mpz_class>,
then call Table::newUniqueInstance(). See examples in Trigs/FixSinCos.cpp.

If for some reason you want to use a unique instance but don’t want/need to expose a user interface for
it, you just have to follow the same sequence of calls as you may find in Table::newUniqueInstance().

Beware, the order is important for the operator scheduling to work properly, and it has changed since
version 5.0.

2.7 Sub-components: shared instances

A component may also be shared (i.e. the same component is reused many times). Simple examples are the
tables in FPConstDiv, or in IntConstDiv.

The preferred method to use in such case is the newSharedInstance() method of Operator, as in the fol-
lowing:

Operator* op = new MySubComponent(...);
op -> setShared();
//now some loop that creates many instances
for (....) {

string myInstanceName = ...;
string actualX = ...;
string actualR = ...;
vhdl << declare(actualX, ..) << " <= " << ...;
newSharedInstance(op, myInstanceName, "X=>"+actualX, "R=>"+actualR);

}

See IntConstDiv or FPDiv for detailed examples.

2.8 Using the Table object

Small tables of precomputed values are very powerful components, especially when targetting FPGAs.
They are quite often shared.

See IntConstDiv or FPDiv for examples of small, shared tables (intended to be implemented as LUTs
on FPGAs, and as logic gates on ASIC).

See FixFunctionByTable for an example how to inherit Table.
See FixFunctionByPiecewisePoly for an example how to instanciate a Table as a sub-

components.
TODO (not repaired yet): See FPExp for an example of unique Table intended to fit in a block RAM.



2.9 Linking against FloPoCo

All the operators provided by the FloPoCo command line are available programmatically in libFloPoCo.
There are two ways to instantiate an operator. One is to use its factory, which replicates the command

line.
The other one is to use the constructor (whose interface is defined in the corresponding hpp file). There

is no one-to-one correspondance.

• Sometimes the command-line interface regroups several Operators. For instance FPAddSinglePath
and FPAddDualPath are, for historical reasons, two different Operators with two different construc-
tors, but are exposed on the interface as one FPAdd with an option.

• Sometimes, the constructor has more interface options than what ends up in the command-line in-
terface, either that some options turned out not to provide interesting solutions, or that they were
designed for research purpose only.

3 Test bench generation

3.1 Overview

Operator provides one more virtual method, emulate(), to be overloaded by each Operator. As the name
indicates, this method provides a bit-accurate simulation of the operator.

Once this method is available, the command
flopoco FPAdd we=8 wf=23 TestBench n=500
produces a test bench of 500 test vectors to exercise FPAdd.

This test bench is properly synchronized if the operator under test happens to be pipelined: emulate()
only has to specify the mathematical (combinatorial) functionality of the operator.

The emulate() method should be considered the specification of the behaviour of the operator. There-
fore, as any instructor will tell you, it should be written before the code generating the VHDL of the operator
(test-driven design).

To see examples of emulate() functions, see

• IntAdder or IntConstDiv for an operator with integer inputs and outputs; For these, the GNU
Multiple Precision library is your friend.

• FixRealKCM for an operator with fixed-point inputs and outputs;

• FPAdd for an operator with floating-point inputs and outputs; For these, your friend is the GNU
MPFR library, and FloPoCo provides all the needed helper functions to convert between bit vectors
and MPFR numbers.

3.2 emulate() internals

emulate() has a single argument which is a TestCase. This is a data-structure associating inputs to out-
puts. Upon entering emulate(), the input part is filled (probably by TestBench), and the purpose of
emulate() is to fill the output part. emulate() is completely generic: Both inputs and outputs are speci-
fied as bit vectors. However these vectors are stored for convenience in mpz class numbers. This class is a
very convenient C++ wrapper around GMP, which can almost be used as an int, but without any overflow
issue.

Therefore an input/output is a map of the name (which should match those defined by addInput etc.)
and a mpz class. When the input/outputs are integers, this is a perfect match.

When the input/outputs are floating-point numbers, the most convenient multiple-precision library
is MPFR. However the I/Os are nevertheless encoded as mpz class. The emulate() method therefore
typically must



• convert the mpz class inputs to arbitrary precision floating-point numbers in the MPFR format – this
is done with the help of the FPNumber class;

• compute the expected results, using functions from the MPFR library;

• convert the resulting MPFR number into its bit vector, encoded in an mpz class, before completing
the TestCase.

This double conversion is a bit cumbersome, but may be copy-pasted from one existing operator: Imitate
FPAddSinglePath or FPExp.

3.3 Fully and weakly specified operators

Most operators should be fully specified: for a given input vector, they must output a uniquely defined vec-
tor. This is the case of IntAdder above. For floating-point operators, this unique output is the combination
of a mathematical function and a well-defined rounding mode. The bit-exact MPFR library is used in this
case. Imitate FPAddSinglePath in this case.

Other operators are not defined so strictly, and may have several acceptable output values. The last
parameter of addOutput defines how many values this output may take. An common requirement is faithful
rounding: the operator should return one of the two FP values surrounding the exact result3 These values
may be obtained thanks to the rounding up and rounding down modes supported by MPFR. See FPExp or
FPLog for examples in floating point, and FixSinCos for an example in fixed point (which is also an
example where the function has two outputs).

3.4 Operator-specific test vector generation

Overloading emulate() is enough for FloPoCo to be able to create a generic test bench using random
inputs. The default random generator is uniform over the input bit vectors. It is often possible to perform
better, more operator-specific test-case generation. Let us just take two examples.

• A double-precision exponential returns +∞ for all inputs larger than 710 and returns 0 for all inputs
smaller than −746. In other terms, the most interesting test domain for this function is when the input
exponent is between −10 and 10, a fraction of the full double-precision exponent domain (−1024 to
1023). Generating uniform random 64-bit integers and using them as floating-point inputs would
mean testing mostly the overflow/underflow logic, which is a tiny part of the operator.

• In a floating-point adder, if the difference between the exponents of the two operands is large, the
adder will simply return the biggest of the two, and again this is the most probable situation when
taking two random operands. Here it is better to generate random cases where the two operands
have close exponents. Besides, a big part of the adder architecture is dedicated to the case when both
exponents differ only by 1, and random tests should be focused on this situation.

Such cases are managed by overloading the Operator method buildRandomTestCases(). See FPExp.cpp
and FPAdd.cpp for the examples above.

3.5 Corner-cases and regression tests

Finally, buildStandardTestCases() allows to test corner cases which random testing has little chance to
find. See FPAdd.cpp for examples.

Here, it is often useful to add a comment to a test case using addComment: these comments will show up
in the VHDL generated by TestBench file=false.

3The allowed error is twice as large as correct rounding, so a correctly rounded result on p bits is as accurate as a faithful result
on p + 1 bits. However, (for reasons too long to detail here) a faithful operator may be much, much cheaper to build than a correctly
rounded one. In such cases it is cheaper to build a faithful operator to p + 1 bits than a correctly rounded one to precision p.



3.6 Regression testing, build test

The command flopoco Autotest Operator=FPadd tests FPAdd for a range of relevant parameter
values. For each parameter vector, it reports if the FloPoCo command succeeded, if the VHDL was syntac-
tically correct, and if the simulation of this VHDL was successful.

The enumeration of the parameter vectors is defined in the (optional) static method
FPAdd::unitTest(). This is a relatively recent addition to the framework, and not all operators
support it, but it is strongly advised to set it up in the early steps of operator development: it helps uncover
bugs that occur for specific values of the parameters.

The command flopoco Autotest Operator=all runs this test for all the operators that support it.
It may take long...

4 Frequency-directed pipeline

The pipeline framework is implemented mostly in the Operator and Signal classes, and we refer the
reader to the source code for the full details. More details can also be found in [7].

4.1 VHDL generation for a simple component

4.1.1 First VHDL parsing and signal graph construction

The vhdl stream is parsed (as the constructor writes to it) to locate VHDL signal identifiers.
This pass builds a signal graph, an example of which is shown on Figure 8 (it was obtained in

flopoco.dot by the command ./flopoco Shifter wIn=8 maxshift=8 dir=1 )
In this graph, the nodes are signals (of the FloPoCo Signal class), and the edges are signal depen-

dencies, i.e. which signal is computed out of which signal. Technically, the graph is built by defining
predecessors and successors of each Signal.

The operations between the signals are not kept in this graph: they are kept in the vhdl stream. How-
ever, their latency (passed as first optional argument to declare()) is used to label each signal. This value
decribes the contribution of this VHDL statement to the critical path.

In Figure 8, the first line of each box is the signal name. The second line is the critical path contribution
of each signal. The third line is the actual global timing of each signal, which is computed in the following.

The reader interested in this first parsing pass should have a look at FlopocoStream.cpp.

4.1.2 Scheduling of the signal graph

The second step of automatic pipelining is the scheduling of the signal graph. It is implemented in the
method Operator::schedule(). It is an ASAP (as soon as possible) scheduling: starting from the input,
we accumulate the critical path along the edges of the signal graph.

With the pipeline=no option, what we obtain in flopoco.dot is an estimate of the critical path from
an input to each signal.

With pipeline=yes, the schedule constructs a pipeline. Each signal is assigned a cycle and a critical
path within this cycle (i.e. what we obtain in flopoco.dot is an estimate of the critical path from the
output of a register to each signal.

The timing of a signal is therefore expressed as a pair (c, τ), where

• c is an integer that counts the number of registers on the longest path from an input to s.

• τ is a real number that represents the critical path delay (in seconds) from the last register or earliest
input to s.

The colors on Fig. 8, right, indicate the cycle. The complete lexicographic time of each signal is given by
the third line of each signal box.

There is a lexicographic order on such timings: (c1, τ1) > (c2, τ2) if c1 > c2 or if c1 = c2 and τ1 > τ2.
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Figure 8: S-Graph for a combinatorial 8-bit barrel shifter, combinatorial (left) and pipelined (right)



4.1.3 Back-annotation of the VHDL stream with delay information

Once each signal is scheduled, there is a second parsing step of the VHDL stream that delays each signal
where it is needed by the proper number of cycle. Technically, when parsing A <= B and C;, the schedule
has ensured that B.cycle≤ A.cycle. If A.cycle > B.cycle, FloPoCo delays signal B by n=A.cycle
− B.cycle cycles.

Technically, it just replaces, in the output VHDL, B with B_dn. It also updates bookkeeping information
that gives the life span of each signal.

This process is performed by the Operator::applySchedule() method.

4.1.4 Final VHDL output

The final step adds to the VHDL stream constructed from previous step all the declarations (entities, signals,
etc) as well as the shift registers that delay signals. It is performed by the Operator::outputVHDL()
method.

4.2 Subcomponents and instance

Now consider the more complex situation of a component that include other subcomponents. There are
two distinct situations:

• either the subcomponent is used only once, in which case we want to schedule it in its context. This
is the default situation. An extensive example of a complex component built by assembling simpler
ones is FPAddSub/FPAddSinglePath.

• Or, the subcomponent is used many times (a typical example is the compressor in a bit heap), in which
case all the instances will necessarily share the same schedule. In FloPoCo, we add a constraint in this
case: such operators remain very small and thus shall not be pipelined. This covers 100% of the use
cases so far. Such components have to be declared shared by calling Operator::setShared().

In the following we detail these two cases and what happens under the hood in terms of scheduling.

4.2.1 Unique instances

In this case, the entity of the subcomponent is used in only one VHDL instance.
FloPoCo provides for this case a single method, Operator::newInstance(). Its inputs are those pro-

vided on the command-line interface, therefore this method will only work for operators which implement
the factory methods. It returns a pointer to the newly created Operator.

In terms of VHDL, Operator::newInstance() creates both the entity of the subcomponent (by call-
ing its constructor) and an instance of this entity in the vhdl stream of the current buffer.

Let us now see what happens in terms of scheduling and pipelining.

• In the signal graph, Operator::newInstance() connects the actual signals to the subcomponent
ports, with simple wires (no delay added to the critical path). The flopoco.dot output shows a box
around the signals of the subcomponent, but there is one single graph linking Signal objects.

• It is useful that the constructor of the subcomponent may take decisions based on the schedule of its
inputs (example: the IntAdder pipelined integer splits its inputs depending on their critical path).
Therefore, Operator::newInstance() calls Operator::schedule() (step 4.1.2 above).

Since there is only one big signal graph, Operator::schedule() first gets to the root of the com-
ponent hierarchy, before actually computing the schedule, starting from the inputs of this root.

• When the inputs to a sub-component are not synchronized, they will be synchronized inside the sub-
component.



• It is important to understand that Operator::schedule() can be invoked on an incomplete graph.
In such an ASAP scheduling, the schedule of a signal is only defined by the schedule of its prede-
cessors: once it is computed, it will no longer change, so Operator::schedule() may be called
several times. It will be called by default after the end of the constructor of a root operator (so the
signal graph is complete).

• All this probably works best (only works?) if the VHDL is written in the natural order, from inputs to
outputs...

4.2.2 Shared instances

Again, shared instances are small, purely combinatorial components.
Here are the main differences:

1. The constructor of the subcomponent must be called only once.

2. The instances themselves must be somehow replicated in the signal graph.

The solution chosen is to replace in the signal graph instances with links between the inputs and outputs.
Each output is labeled with a critical path contribution, equal to the critical path of this output in the
instance.

This is performed under the hood by the Operator::inPortMap(), Operator::outPortMap()
and Operator::instance() methods.

An instance is combinatorial, hence lives within a single cycle. Therefore, all the outputs of a shared
instance have this same cycle. All the inputs are also input at this same cycle to the instance (they are
delayed in the port map. If a pipeline register is inserted to account for the delay of a shared instance, it
is inserted on the outputs.

The simplest example of shared instances is currently FPDivSqrt/FPDiv.

4.3 Limitations of the pipelining framework

The parser has some limitations when parsing the generated vhdl. The following statements are not sup-
ported:

• case statements are not supported. Use conditional assignments (like the with ... select or
when statements) if possible or if/then/else statements.

• Assignments to parts of a vector like

signal v: std logic vector(1 downto 0);
(...)
v(0)<=expr1;
v(1)<=expr2;
are not supported. It should be written v <= expr2 & expr1; instead.

5 Bit heaps

The main interface to the developer is the BitHeap class, which encapsulates all the needed data structures
and methods. The bits to be added to a BitHeap are simply signals of the operator being generated. This
makes it possible to define the initial bit heap, which can be of any shape or size. The BitHeap class
also implements the compressor tree optimization techniques presented in [8, 9, 10, 11] (the compression
algorithm is selected on the command line), and can generate the corresponding hardware.
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Figure 9: S-Graph for a pipelined FPAddSinglePath operator. Zoom on the Shifter component and observe
that it has been pipelined for its context.



Listing 1: Typical code for an operator involving a bit heap
bh = new BitHeap(...); // create an empty bit heap

// construction of the bit heap
for (...) {

// generate VHDL that defines signals such as
/// mySingleBit or myBitVector
...

// then add these signals to the bit heap:
bh->addBit(myBit, pos1); // no VHDL generation here
bh->addSignal(mybitVector, pos2); // nor here

}

// generate the compressor tree for the bit heap
bh->startCompression(); // this line generates a lot of VHDL

Table 3: The main methods of the BitHeap interface
Method Description

void addBit(string sigName,int pos) Add a single bit
void addSignal(string sigName,int shift) Add a fixed-point signal, with sign extension if

needed
void subtractSignal(string name,int shift) Subtract a fixed-point signal, with sign extension if

needed
void addConstantOneBit(int pos) Add a constant one bit

void addConstant(mpz class cst,int pos) Add the constant cst · 2pos

void startCompression() Generate a compressor tree
When the argument is a signal name, it is used to refer to a FloPoCo object of the class Signal, which encapsulate a fixed-point format

with its signedness, its MSB, and its LSB.

The typical code to generate the architecture of an operator involving a bit heap is shown in Listing 1.
The main methods to manipulate the bit heap are shown in Table 3. Basically, there is everything to add or
subtract single bits, signed or unsigned numbers held in bit vectors, or constants. Once all the bits have been
thrown on the bit heap, the startCompression() method launches the optimization of the compressor
tree as well as the VHDL code generation.

Some operators that use the BitHeap have two constructors:

• one standalone, classical; The BitHeap is constructed in the operator and used only for this operator

• one virtual; a BitHeap from another operator is provided that is shared among the operators (which
can build a more complex operator).

In the latter case, the typical arithmetic flow requires to first perform some error analysis to determine
a number of guard bits to add to the bit heap. This must be done before any VHDL generation. If we want
to delegate some of this error analysis to the subcomponents, then either it must be implemented in some
static method of the Operator, or the constructor must delay the actual VHDL output to another method.

For an example of this in practice, see FixFilters/FixSOPC.

5.1 The data structure

This section and the following describe the internals of the BitHeap class, and are intended for developers
wishing to extend the BitHeap framework itself (e. g., with new compressors or compression algorithms).



Figure 10: Bit heap obtained for a 16-bit, 8-tap half-sine pulse shaping FIR filter operator FixHalfSine

Table 4: CompressionStrategy
compression (FloPoCo argument) CompressionStrategy class Reference

heuristicMaxEff MaxEfficiencyCompressionStrategy [?]
heuristicPA ParandehAfsharCompressionStrategy [?]
heuristicFirstFit FirstFittingCompressionStrategy [?]
optimal OptimalCompressionStrategy [?]
optimalminstages OptimalCompressionStrategy [?]
optimal minstages CompressionStrategyOptILP [?]

A weighted bit is a data structure consisting essentially of a signal name, a bit position, and various fields
used when building the compressor tree. In FloPoCo the Signal class also encapsulates the timing of each
signal, so each weighted bit also carries its arrival time.

A column of the bit heap is represented as a list of weighted bits. This list is sorted by the arrival time
of the bits, so that compression algorithms can compress first the bits arrived first.

The complete bit heap data structure essentially consists of its MSB and LSB, and an array of columns
indexed by the positions.

The BitHeap class also offers methods to visualize a bit heap as a dot diagram like the one shown
in Figure 10. Use the generateFigures flag to enable the output of SVG and .tex files (these use the
macros found in dot diag macros.tex). Different arrival times may be indicated by different colors.

FloPoCo may generate such figures as SVG files that can be opened in a browser, in which case hovering
the mouse over one bit shows its signal name and its arrival instant in circuit time.

5.2 Compressor tree generation

Once the data structure of the BitHeap is created by using the methods of Table 3, the compressor tree
generation is started by calling startCompression(). It involves the following steps:

1. The algorithm for solving the compressor tree problem is selected (a derived class from
CompressionStrategy).

2. A list of possible (target-dependent) compressors is generated (class BasicCompressor for repre-
senting the shape and class Compressor implementing the Operator performing the compression).

3. Then, the bits of the bit heap are scheduled to different stages according to their cycle and combina-
torial arrival time.

4. Next, the compressor trees are optimized (by a class derived from CompressionStrategy) and
a BitHeapSolution object is created. This solution contains the used compressors per stage and
column.

5. Finally, the VHDL code of the compressor tree is generated.

New compressor tree optimization methods can be implemented by extending
CompressionStrategy. The currently available methods are given in Table 4.



6 IntMultiplier

Operator IntMultiplier is one of the more complex operators that is implemented using many classes
and used by many other operators. If is based on the tiling method that was introduced in [12, 13, 14],
further extended in [12, 15, 16, 17, 18], and also used for optimal squarers [19].

1. A list of possible multiplier tiles for a certain target is created.

A multiplier tile is represented using the base class BaseMultiplier. Any multiplier tile has to be
derived from this class. It contains all the information of the size of a tile, its cost (LUTs, DSPs) and
overrrides the function generateOperator() that returns the actual operator when this tile is used
(the returned operator might have a user interface or not).

7 Writing a new target

Try to fill data such as LUT input size (lutInputs()), etc.
Here are some operators that can be used to calibrate delay functions. You may use the scripts in tools/

to launch syntheses and get critical path reports. It is better to ask for a relatively low frequency (say, half
peak, 200MHz) to avoid troubles with I/O buffer delays when using post place-and-route synthesis.

• To calibrate the logic delay, use

./flopoco IntConstDiv wIn=64 d=3 Wrapper

If you have specified your lutInputs properly, the architecture should be a sequence of LUTs connected
by local routing. First check that the estimated cost reported by FloPoCo matches the actual cost.

• To calibrate the IntAdder delay, use

./flopoco IntAdder wIn=64 Wrapper

for increasing values of 64.
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Table 5: Support classes of IntMultiplier
Class Description Reference

IntMultiplier The main operator and entry point for integer multipliers [13, 14, 12]

DSPBlock An operator representing a generic DSP with pre- and post-adder
IntKaratsuba Old Karatsuba operator, not used anymore, should be removed?
IntKaratsubaRectangular New Karatsuba operator that can handle rectangular DSP tiles

efficiently. Limited to fixed sizes described in the paper (used as a
tile)

[18]

IntMultiplierLUT LUT-based multiplier Maybe outdated due to IntMultiplier??
FixMultAdd Fixed point MAC operator. Uses the virtual multiplier of

IntMultipler
IntSquarer Squarer operator. Internally it uses either the schoolbook squaring

or the squaring feature of IntMultiplier
[19]

BaseMultiplier This class is the base class to describe multiplier tile. It describes
the capabilities of a tile (max. sizes) and its cost, while a concrete
instance of a tile (with concrete sizes) is represented using the
internal class Parametrization

BaseMultiplierDSP A tile describing the DSP block
BaseMultiplierDSPKaratsuba Represents a rectangular Karatsuba tile. This one is independent

of IntKaratsubaRectangular; mabye get rid of
IntKaratsubaRectangular?

BaseMultiplierBoothArrayXilinx A tile describing the Booth array multiplier [20, 21]
BaseMultiplierDSPSuperTilesXilinx A tile describing super tiles for Xilinx [12, 13]
BaseMultiplierIrregularLUTXilinx A tile describing the irregular (incomplete) LUT multiplier [22]
BaseMultiplierBoothArrayXilinx A tile describing the Booth array multiplier [20]
BaseMultiplierLUT A tile describing LUT-based multipliers
BaseMultiplierXilinx2xk A tile describing the 2×k multipliers for Xilinx FPGAs
BaseMultiplierXilinxGeneralizedLUT ???
BaseSquarerLUT A tile describing LUT-based squarer

MultiplierTileCollection List of instances of BaseMultiplier, also contains multiple lists
of BaseMultiplier (FullTileCollection,
BaseTileCollection, VariableYTileCollection, ...),
reduce this to a single list!

TilingStrategy Base class for implementing tiling algorithms
TilingStrategyOptimalILP An ILP-based tiling solver [16]
TilingStrategyBeamSearch A heuristic based on a beam search algorithm (incluing greedy) [15]
TilingAndCompressionOptILP An ILP-based tiling solver that also solves the related compressor

tree design problem
[17]

FormalBinaryProduct ???
GenericBinaryPolynomial ???
IntPower Derived from GenericBinaryPolynomial status ???
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